Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Predicted Habit Planes From Two Models: Invariant-Plane-Strain and Elastic-Energy-Minimization



H M. Ledbetter


We calculated habit planes (austenite-martensite interface planes) using two approaches: (1) the invariant-plane-strain (IPS) model proposed by Wechsler-Lieberman-Read and Bowles-Mackenzie and (2) elastic-strain-energy minimization (EEM) of a thin-disc inclusion using a model similar to those described by Eshelby, Mura, Khachaturyan, and others. We considered three example materials: In-Tl, Au-Cd, Fe-Ni. The IPS model requires as imput the austenite and martensite unit-cell dimensions and a plane of lattice-invariant shear. The EEM model requires cell dimensions and elastic-stiffness constants. (For the present EEM-model calculations, we neglected twinning.) In all three cases, the EEM model predicts habit planes on the (OK/) line and nears (011). This agrees well with the IPS-model prediction for the small-strain In-Tl case. For the moderate-strain Au-Cd case, the IPS-EEM disagreement is about 12 , the observed habit plane lying near the (hkk) line. The EEM model fails to predict the habit planes for large eigenstrain, large-twinning cases such as Fe-Ni, where the habit plane lies toward the unit-triangle center, away from any high-symmetry direction or zone.
Minerals, Metals, and Materials Society


gold-cadmium alloy, habit planes, indium-Hrallium alloy, iron-nickel alloy, martensite


Ledbetter, H. (1998), Predicted Habit Planes From Two Models: Invariant-Plane-Strain and Elastic-Energy-Minimization, Minerals, Metals, and Materials Society (Accessed November 29, 2023)
Created November 1, 1998, Updated February 17, 2017