NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Precision spectroscopy with frequency combs at 3.4 υm
Published
Author(s)
Esther Baumann, Fabrizio R. Giorgetta, William C. Swann, Alexander M. Zolot, Ian R. Coddington, Nathan R. Newbury
Abstract
We discuss precision spectroscopy with a comb-based spectrometer at 3.4 υm. Our goal is to explore comb-based spectroscopy as an alternative method for fast, highly resolved, accurate measurements of gas line shapes. The spectrometer uses dual 1.5 υm frequency combs down converted to 3.4 υm via difference frequency generation (DFG) with a stabilized 1 υm fiber laser. One 3.4 υm comb is transmitted through methane and heterodyned against the second, offset comb to measure the gas absorption and dispersion. Doppler-broadened methane spectral lines are measured to below 1 MHz uncertainty. We also discuss the higher sensitivity alternative of a comb-assisted swept-laser DFG spectrometer.
Baumann, E.
, Giorgetta, F.
, Swann, W.
, Zolot, A.
, Coddington, I.
and Newbury, N.
(2011),
Precision spectroscopy with frequency combs at 3.4 υm, SPIE Optical Engineering + Applications 2011, San Diego, CA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909488
(Accessed October 7, 2025)