Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Position- and Polarization-Specific Waveguiding of Multi-Emissions in Single ZnO Nanorods



Bonghwan Chon, Johnson Truong, Matthew Hansen, Jong-in Hahm, Young J. Lee


We examine multiphoton-produced optical signals waveguided through single ZnO nanorods (NRs) using a newly developed, scanning offset-emission hyper- spectral microscopy (SOHM) technique. Specifically, we concurrently analyze waveguiding behaviors of sum-frequency generation (SFG), deep-trap emissions (DTE), and coherent anti-Stokes Raman scattering (CARS) occurring in individual ZnO NRs. SOHM acquires spectrally indexed and spatially resolved intensity maps/spectra of waveguided light intensity, while excitation/emission collection positions and light polarization are scanned. Hence, the powerful measurement capabilities of SOHM enable quantitative analyses of the different ZnO NR waveguiding behaviors specific to the multiphoton-generated emissions as a function of measurement position, light−matter interaction geometry, and the optical origin of the guided signal. We subsequently reveal the distinct waveguiding behaviors of single ZnO NRs pertaining to the SFG-, DTE-, and CARS-originated signals and discuss particularly attractive ZnO NR properties in CARS waveguiding.
ACS Photonics


zinc oxide, nanorod, waveguiding, deep-trap emission, coherent anti-Stokes Raman scattering, polarization, scanning offset-emission hyperspectral microscopy
Created June 19, 2019, Updated March 15, 2020