Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Physical-Layer Analysis of IEEE 802.11ay SU-MIMO using the Quasi-Deterministic Channel Model with Measurements



Anuraag Bodi, Jiayi Zhang, Jian Wang, Camillo Gentile


Physical-layer analysis on millimeter-wave systems to date have used channels models reduced from measurements in static environments. This is because most millimeter-wave channel sounders take hours for a full channel sweep due to the slow mechanical rotation of single directional antennas. Rather, by using arrays of electronically-switched directional antennas, our state-of-the art 60- GHz channel sounder can take a full channel sweep in fractions of a millisecond. In order to provide more accurate analysis, we conducted an extensive channel measurement campaign including 325 distinct transmitter-receiver deployments in an indoor environment with pedestrian motion. The resultant channel model was used to analyze IEEE 802.11ay, the new standard for next-generation Wi- Fi operating in the unlicensed 60-GHz band expected for release in 2019. The standard is an amendment to its 802.11ad predecessor to include 8x8 single-user MIMO (amongst a flurry of other enhancements). The physical-layer analysis was based on an extension of the MATLAB® implementation of 802.11ay to incorporate a proposed scheme for 8x8 single-user MIMO tailored to the specific properties of the measured channel. The analysis resulted in bit-error-rate curves for various transceiver parameters, namely the number of RF chains, phased-array antenna dimension, and the modulation and coding schemes.
Proceedings Title
IEEE International Conference on Communications
Conference Dates
May 20-24, 2019
Conference Location
Shanghai, CN


hybrid beamforming, millimeter-wave, mmWave


Bodi, A. , Zhang, J. , Wang, J. and Gentile, C. (2019), Physical-Layer Analysis of IEEE 802.11ay SU-MIMO using the Quasi-Deterministic Channel Model with Measurements, IEEE International Conference on Communications, Shanghai, CN (Accessed November 28, 2023)
Created May 23, 2019, Updated October 12, 2021