An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
We consider a variant of the phase retrieval problem, where vectors are replaced by unitary matrices, i.e., the unknown signal is a unitary matrix U, and the measurements consist of squared inner products |Tr(C*U)|^2 with unitary matrices C that are chosen by the observer. This problem has applications to quantum process tomography, when the unknown process is a unitary operation. We show that PhaseLift, a convex programming algorithm for phase retrieval, can be adapted to this matrix setting, using measurements that are sampled from unitary 4- and 2-designs. In the case of unitary 4-design measurements, we show that PhaseLift can reconstruct all unitary matrices, using a near-optimal number of measurements. This extends previous work on PhaseLift using spherical 4- designs. In the case of unitary 2-design measurements, we show that PhaseLift still works pretty well on average: it recovers almost all signals, up to a constant additive error, using a near-optimal number of measurements. These 2-design measurements are convenient for quantum process tomography, as they can be implemented via randomized benchmarking techniques. This is the first positive result on PhaseLift using 2-designs.
Proceedings Title
International Conference on Sampling Theory and Applications (SampTA)
Liu, Y.
and Kimmel, S.
(2017),
Phase Retrieval Using Unitary 2-Designs, International Conference on Sampling Theory and Applications (SampTA), Tallinn, -1, [online], https://doi.org/10.1109/SAMPTA.2017.8024414
(Accessed October 10, 2024)