Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Phase Retrieval Using Unitary 2-Designs

Published

Author(s)

Yi-Kai Liu, Shelby Kimmel

Abstract

We consider a variant of the phase retrieval problem, where vectors are replaced by unitary matrices, i.e., the unknown signal is a unitary matrix U, and the measurements consist of squared inner products |Tr(C*U)|^2 with unitary matrices C that are chosen by the observer. This problem has applications to quantum process tomography, when the unknown process is a unitary operation. We show that PhaseLift, a convex programming algorithm for phase retrieval, can be adapted to this matrix setting, using measurements that are sampled from unitary 4- and 2-designs. In the case of unitary 4-design measurements, we show that PhaseLift can reconstruct all unitary matrices, using a near-optimal number of measurements. This extends previous work on PhaseLift using spherical 4- designs. In the case of unitary 2-design measurements, we show that PhaseLift still works pretty well on average: it recovers almost all signals, up to a constant additive error, using a near-optimal number of measurements. These 2-design measurements are convenient for quantum process tomography, as they can be implemented via randomized benchmarking techniques. This is the first positive result on PhaseLift using 2-designs.
Proceedings Title
International Conference on Sampling Theory and Applications (SampTA)
Conference Dates
July 3-7, 2017
Conference Location
Tallinn

Keywords

Phase retrieval, quantum process tomography, unitary designs

Citation

Liu, Y. and Kimmel, S. (2017), Phase Retrieval Using Unitary 2-Designs, International Conference on Sampling Theory and Applications (SampTA), Tallinn, -1, [online], https://doi.org/10.1109/SAMPTA.2017.8024414 (Accessed October 10, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created September 4, 2017, Updated July 11, 2019
Was this page helpful?