Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Origin and control of ionic hydration patterns in nanopores

Published

Author(s)

Miraslau L. Barabash, William A. Gibby, Carlo Guardiani, Alexander Smolyanitsky, Dmitry G. Luchinsky, Peter V. McClintock

Abstract

In order to permeate a nanopore, an ion must overcome a dehydration energy barrier caused by the redistribution of surrounding water molecules. The redistribution is inhomogeneous, anisotropic and strongly position-dependent, resulting in complex patterns that are routinely observed in molecular dynamics simulations. Here, we study the physical origin of these patterns and of how they can be predicted and controlled. We introduce an analytic model able to predict the patterns in a graphene nanopore in terms of experimentally accessible radial distribution functions, giving results that agree well with molecular dynamics simulations. The patterns are attributable to a complex interplay of ionic hydration shells with water layers adjacent to the graphene membrane and with the hydration cloud of the nanopore rim atoms, and we discuss ways of controlling them. Our findings pave the way to designing required transport properties into nanoionic devices by optimising the structure of the hydration patterns.
Citation
Communications Materials

Keywords

artificial nanopore, theory, ionic hydration shells, radial distribution function

Citation

Barabash, M. , Gibby, W. , Guardiani, C. , Smolyanitsky, A. , Luchinsky, D. and McClintock, P. (2021), Origin and control of ionic hydration patterns in nanopores, Communications Materials, [online], https://doi.org/10.1038/s43246-021-00162-x, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931214 (Accessed April 24, 2024)
Created June 18, 2021, Updated October 14, 2021