NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Origin and control of ionic hydration patterns in nanopores
Published
Author(s)
Miraslau L. Barabash, William A. Gibby, Carlo Guardiani, Alexander Smolyanitsky, Dmitry G. Luchinsky, Peter V. McClintock
Abstract
In order to permeate a nanopore, an ion must overcome a dehydration energy barrier caused by the redistribution of surrounding water molecules. The redistribution is inhomogeneous, anisotropic and strongly position-dependent, resulting in complex patterns that are routinely observed in molecular dynamics simulations. Here, we study the physical origin of these patterns and of how they can be predicted and controlled. We introduce an analytic model able to predict the patterns in a graphene nanopore in terms of experimentally accessible radial distribution functions, giving results that agree well with molecular dynamics simulations. The patterns are attributable to a complex interplay of ionic hydration shells with water layers adjacent to the graphene membrane and with the hydration cloud of the nanopore rim atoms, and we discuss ways of controlling them. Our findings pave the way to designing required transport properties into nanoionic devices by optimising the structure of the hydration patterns.
Barabash, M.
, Gibby, W.
, Guardiani, C.
, Smolyanitsky, A.
, Luchinsky, D.
and McClintock, P.
(2021),
Origin and control of ionic hydration patterns in nanopores, Communications Materials, [online], https://doi.org/10.1038/s43246-021-00162-x, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931214
(Accessed October 1, 2025)