NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Optimizing the Network Diversity to Improve the Resilience of Networks Against Unknown Attacks
Published
Author(s)
Daniel Borbor, Lingyu Wang, Sushil Jajodia, Anoop Singhal
Abstract
Diversity as a security mechanism is receiving renewed interest due to its potential for improving the resilience of software and networks against previously unknown attacks. Recent works show diversity can be modeled and quantified as a security metric at the network level. However, such efforts do not directly provide a solution for improving the network diversity. On the other hand, existing network hardening approaches largely focus on handling vulnerabilities and do not pay special attention to diversity. In this paper, we propose an automated approach to diversifying network services under various cost constraints in order to improve the network's resilience against unknown attacks. Specifically, we first define models for network services and their relationships, diversification options, and the costs. We then formulate the optimization problem of diversifying network services under given cost constraints. We devise optimization and heuristic algorithms for efficiently solving the problem, and we evaluate our approach through simulations.
Borbor, D.
, Wang, L.
, Jajodia, S.
and Singhal, A.
(2019),
Optimizing the Network Diversity to Improve the Resilience of Networks Against Unknown Attacks, Computer Communications, [online], https://doi.org/10.1016/j.comcom.2019.06.004, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=926444
(Accessed October 8, 2025)