Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Numerical Studies of Gas-phase interactions of phosphorus-containing compounds with coflow diffusion flames



Gregory T. Linteris, Fumiaki Takahashi, Viswanath R. Katta, Valeri I. Babushok


The effects of phosphorus-containing compounds (PCCs) on the extinguishment and structure of methane-air coflow diffusion flames, in the cup-burner configuration, have been studied computationally. Dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), or phosphoric acid is added to either the air or fuel flow. Time-dependent axisymmetric computation is performed with full gas-phase chemistry and transport to reveal the flame structure and inhibition process. A detailed chemical-kinetics model (77 species and 886 reactions) is constructed by combining the methane-oxygen combustion and phosphorus inhibition chemistry. A simple model for radiation from CH4, CO, CO2, H2O, and soot based on the optically thin-media assumption is incorporated into the energy nist-equation. The inhibitor effectiveness is calculated as the minimum extinguishing concentrations (MECs) of CO2 (added to the oxidizer) as a function of the PCC loading (added to the oxidizer or fuel stream). The calculated MEC of CO2 without an inhibitor is in good agreement with the measured value. For moderate DMMP loading to the air (
Proceedings of the Combustion Institute


Fire retardant, Reaction inhibitor, Combustion enhancement, Extinguishment, Cup burner
Created July 7, 2018, Updated November 10, 2018