Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

New Patterns of Polymer Blend Miscibility Associtaed With Monomer Shape and Size Asymmetry

Published

Author(s)

J Dudowicz, Karl Freed, Jack F. Douglas

Abstract

Polymer blends are formulated by mixing polymers with different chemical structures to create new materials with properties intermediate between those of the individual components. While Flory-Huggins (FH) theory explains some basic trends in blend miscibility, the theory completely neglects the dissimilarity in monomer structures that is central to the fabrication of real blends. We systematically investigate the influence of monomer structure on blend miscibility using the lattice cluster theory (LCT) generalization of the FH model. Analytical calculations are renderedtractable by restricting the the theoretical analysis to the limit of incompressible and high molecular weight blends. The well-known miscibility pattern predicted by FH theory is recovered only for a limited range of monmer size and shape asymmetries, but additional contributions to the LCT entropy and internal energy of mixing for dissimilarity shaped monomers lead to three additional blend miscibility classes whose behaviors are quite different from the predictions of classical FH theory. One blend miscibility class (class IV) exhibits a remarkable resemblance to the critical behavior of polymer solutions. In particular, the theta temperature for class IV blends is near a molecular weight insensitive critical temperature for phase separation, the critical composition is highly asymmetric, and the correlation length amplitude is significantly less than the chain radius gyration. Experimental evidence for these new blend miscibility classes is discussed, and predictions are made for specific blends of polyolefins that should illustrate these new patterns of blend miscibility.
Citation
Journal of Chemical Physics
Volume
116
Issue
No. 22

Keywords

blend miscibility classes, correlation length, critical temperature, Flory-Huggins theory, lattice cluster theory, monomer structure, polymerblends, simplified lattice cluster theory, theta temperature

Citation

Dudowicz, J. , Freed, K. and Douglas, J. (2002), New Patterns of Polymer Blend Miscibility Associtaed With Monomer Shape and Size Asymmetry, Journal of Chemical Physics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=851964 (Accessed April 26, 2024)
Created May 31, 2002, Updated October 12, 2021