NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Peter C. Sebastian, James Salvador, Joshua B. Martin, Mercouri G. Kanatzidis
Abstract
The intermetallic compounds YbAu2In4 and Yb2Au3In5 were obtained as single crystals in high yield from reactions run in liquid indium. Single crystal X-ray diffraction data of YbAu2In4 showed that it crystallizes as a new structure type in the monoclinic space group P21/m and lattice constants a = 7.6536(19) Å, b = 4.5424(11) Å, c = 9.591(2) Å and β = 107.838(4)°. The YbAu2In4 compound is composed of a complex [Au2In4]3− polyanionic network in which the rare-earth ions are embedded. Yb2Au3In5 crystallizes in the polar space group Cmc21 with the Y2Rh3Sn5 type structure and lattice constants a = 4.5351(9) Å, b = 26.824(5) Å, and c = 7.4641(15) Å. The gold and indium atoms define a complex three-dimensional [Au3In5] network with a broad range of Au−In (2.751(2) Å−3.0518(16) Å) and In−In (3.062(3) Å−3.3024(19) Å) distances. Magnetic susceptibility measurements of YbAu2In4 revealed a transition at 25 K. Below the transition, the susceptibility of YbAu2In4 follows Curie−Weiss behavior with an effective paramagnetic moment of 0.79 μB/Yb. Magnetic susceptibility measurements on Yb2Au3In5 show a mixed valent ytterbium and the magnetic moment within the linear region (<100 K) of 1.95 μB/Yb. Heat capacity data for YbAu2In4 and Yb2Au3In5 give Debye temperatures of 185 and 153 K, respectively.
Sebastian, P.
, Salvador, J.
, Martin, J.
and Kanatzidis, M.
(2010),
New Intermetallics YbAu2In4 and Yb2Au3In5, Inorganic Materials, [online], https://doi.org/10.1021/ic101502e, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=905681
(Accessed October 10, 2025)