NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A New Approach to Johnson Noise Thermometry Using a Quantum Voltage Noise Source for Calibration
Published
Author(s)
Sae Woo Nam, Samuel Benz, Paul Dresselhaus, Weston L. Tew, David R. White, John M. Martinis
Abstract
We describe a new approach to Johnson Noise Thermometry (JNT) that addresses certain limitations found in the conventional approach. The concept takes advantage of recent advances in digital synthesis and signal processing techniques together with advances in Josephson voltage standards. By using the perfect quantization fo voltages from the Josephson effect, a synthesized broadband waveform can be used as a calculable noise source for calibrations. A collaboration between NIST and the MSI explores this approach with the initial goal of creating a JNT measurement system capable of achieving relative accuracies of 0.001% in the range of temperatures between 84K and 430K. In this paper, we discuss the use of a broadband Josephson waveform generator to produce a calculable reference noise source, the related metrological challenges, the technical advantages conveyed by this approach, and the commensurate opportunities to advance the state of the field.
Proceedings Title
Proc., Conference on Precision Electromagnetic Measurements (CPEM)
correlation, Johnson noise, Josephson junction, Nyquist, temperature, thermometry, voltage standard, waveform synthesis
Citation
Nam, S.
, Benz, S.
, Dresselhaus, P.
, Tew, W.
, White, D.
and Martinis, J.
(2002),
A New Approach to Johnson Noise Thermometry Using a Quantum Voltage Noise Source for Calibration, Proc., Conference on Precision Electromagnetic Measurements (CPEM), Ottawa, 1, CA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=1083
(Accessed October 9, 2025)