Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

The neural representation of faces and bodies in motion and at rest



P J. Phillips, Alice O'Toole, Vaidehi Natu, Xiaobo An, Rice Allyson, James Ryland


The neural organization of person processing relies on brain regions functionally selective for faces or bodies, with a subset of these regions preferring moving stimuli. Although the response properties of the individual areas are well established, less is known about the neural response to a whole person in a natural environment. Targeting an area of cortex that spans multiple functionally-selective face and body regions, we examined the relationship among neural activity patterns elicited in response to faces, bodies, and people in static and moving displays. When both stimuli were static or moving, pattern classification analyses indicated highly discriminable responses to faces, bodies, and people. Neural discrimination transferred in both directions between representations created from moving or static stimuli. It transferred also to stimuli experienced across static and dynamic presentation (one static and the other dynamic). In both transfer cases, however, discrimination accuracy decreased. Next, we examined the relative contribution of activity pattern vs. response magnitude to discrimination by comparing classifiers that operated with magnitude-normalized scans with classifiers that retained pattern and magnitude information. When both stimuli were moving or static, response magnitude contributed to classification, but the spatially distributed activity pattern accounted for the majority of the discrimination. Across static and moving presentations, activity pattern accounted completely for the discriminability of neural responses to faces, bodies, and people, with no contribution from response magnitude. Combined, the results indicate redundant and flexible access to person-based shape codes from moving and static presentations. The transfer of shape information across presentation types that preferentially access dorsal and ventral visual processing streams indicates a common shape code that may ground well-known functional divisions in the use of face


Phillips, P. , O'Toole, A. , Natu, V. , An, X. , Allyson, R. and Ryland, J. (2014), The neural representation of faces and bodies in motion and at rest, Neuroimage (Accessed June 15, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created January 29, 2014, Updated February 19, 2017