Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Nearly Ferromagnetic Spin-Triplet Superconductivity

Published

Author(s)

Sheng NMN Ran, Christoper Eckberg, Qing-Ping Ding, Yuji Furukawa, Tristin Metz, Shanta Ranjan Saha, I Lin NMN Liu, Mark Zic, Hyunsoo Kim, Johnpierre NMN Paglione, Nicholas P. Butch

Abstract

One of the most interesting differences between spin triplet superconductors and the conventional spin singlet variety is the two-component triplet order parameter that allows spin up and down electrons to couple with different strength. Such nonunitary superconductors, in which spin up and down components have different gaps and an intrinsic spin polarization, are ideal platforms for studying topological phenomena1,2. So far, the only established examples of nonunitary pairing include the superfulid 3He in high magnetic fields3, known as the A1 phase, as well as ferromagnetic superconductors4. It is an intriguing question whether nonunitary pairing can happen in the absence of a magnetic field - external or internal - thus spontaneously breaking time reversal symmetry. Here we report the discovery of novel nonunitary spin-triplet superconductivity in UTe2, which closely resembles the ferromagnetic syperconductrs5-7 with dramatically enhanced transition temperature and upper critical field, and a paramagnetic normal state. UTe2 exhibits the crucial ingredients of a nonunitary triplet superconducting state, namely: an extremely large, anisotropic upper critical field Hc2, temperature independent nuclear magnetic resonance (NMR) Knight shift in the superconducting state that can only be due to triplet pairing and a large residual normal electronic density of states indicating that half of the electrons remain ungapped. In other words, a spin up superfluid coexists with a spin down Fermi liquid. This discovery yields a new platform for encoding information using topological excitations and for manipulation of spin-polarized currents.
Citation
Science
Volume
365
Issue
6454

Keywords

triplet superconductivity, nonunitary pairing, quantum critical ferromagnet
Created August 19, 2019, Updated April 26, 2020