Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Near-Unity Spin Hall Ratio in Ni$_x$Cu$_{1-x}$ Alloys

Published

Author(s)

Mark W. Keller, Katy Gerace, Monika Arora, Justin M. Shaw, Thomas J. Silva

Abstract

We report a large spin Hall effect in the 3$d$ transition metal alloy Ni$_x$Cu$_{1-x}$ for $x \in \{ 0.3,0.75\} $, detected via the ferromagnetic resonance of a permalloy (Py = Ni$_{80}$Fe$_{20}$) film deposited in a bilayer with the alloy. A thickness series at $x$ = 0.6, for which the alloy is paramagnetic at room temperature, allows us to determine the spin Hall ratio ${\theta _{{\text{SH}}}} \approx 1$, spin diffusion length ${\lambda _{\text{s}}}$, spin mixing conductance $G_{ \uparrow \downarrow }^{}$, and damping due to spin memory loss ${\alpha _{{\text{SML}}}}$. We compare our results with similar experiments on Py/Pt bilayers measured using the same method.
Citation
Physical Review B
Volume
99
Issue
21

Keywords

spin Hall effect, spin memory loss, spin pumping
Created June 7, 2019, Updated July 2, 2019