NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Multivariate Analysis of 2D 1H, 13C methyl NMR Spectra of Monoclonal Antibody Therapeutics to Facilitate Assessment of Higher Order Structure
Published
Author(s)
Luke W. Arbogast, Frank Delaglio, John E. Schiel, John P. Marino
Abstract
Two-dimensional (2D) 1H13C methyl NMR provides a powerful tool to probe the higher order structure (HOS) of monoclonal antibodies (mAbs), since spectra can readily be acquired on intact mAbs at natural isotopic abundance, and small changes in chemical environment and structure give rise to observable changes in corresponding spectra, which can be interpreted at atomic resolution. This makes it possible to apply 2D NMR spectral fingerprinting approaches directly to drug products in order to systematically characterize structure and excipient effects. Systematic collections of NMR spectra are often analyzed in terms of the changes in specifically identified peak positions, as well as changes in peak height and line widths. A complementary approach is to apply principal component analysis (PCA) directly to the matrix of spectral data, correlating spectra according to similarities and differences in their overall shapes, rather than according to parameters of individually identified peaks. This is particularly well-suited for spectra of mAbs, where some of the individual peaks might not be well resolved. Here we demonstrate the performance of the PCA method for discriminating structural variation among systematic sets of 2D NMR fingerprint spectra using the NISTmAb and illustrate how spectral variability identified by PCA may be correlated to structure.
Arbogast, L.
, Delaglio, F.
, Schiel, J.
and Marino, J.
(2017),
Multivariate Analysis of 2D 1H, 13C methyl NMR Spectra of Monoclonal Antibody Therapeutics to Facilitate Assessment of Higher Order Structure, Analytical Chemistry, [online], https://doi.org/10.1021/acs.analchem.7b03571
(Accessed October 9, 2025)