NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Steven M. Disseler, Xuan Luo, Bin Gao, Yoon Seok Oh, Rongwei Hu, Yazhong Wang, Dylan Quintana, Alexander Zhang, Qingzhen Huang, June W. Lau, Rick L. Paul, Jeffrey W. Lynn, Sang-Wook Cheong, William D. Ratcliff
Abstract
The hexagonal phase of LuFeO3 is a rare example of a multiferroic material possessing a weak ferromagnetic moment, which is predicted to be switchable by an electric field. We stabilize this structure in bulk form through Mn and Sc doping, and determine for the first time the complete magnetic and crystallographic structures using neutron scattering and magnetometry techniques. The ferroelectric P63cm space group is found to be stable over a wide concentration range, ordering antiferromagnetically with Neel temperatures that smoothly increase following the ratio of c to a{?I}(c/a) lattice parameters up to 172 K, the highest found in this class of materials to date. The magnetic structure for a range of temperatures and dopings is consistent with recent studies of high-quality epitaxial films of pure hexagonal LuFeO3 including a ferromagnetic moment parallel to ferroelectric axis. We propose a mechanism by which room temperature multiferroicity could be achieved in this class of materials.
Disseler, S.
, Luo, X.
, Gao, B.
, , Y.
, Hu, R.
, Wang, Y.
, Quintana, D.
, Zhang, A.
, Huang, Q.
, Lau, J.
, Paul, R.
, Lynn, J.
, Cheong, S.
and Ratcliff, W.
(2015),
Multiferroicity in Doped Hexagonal LuFeO<sub>3</sub>, Physical Review B, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919202
(Accessed October 21, 2025)