Multicomponent adsorption in mesoporous flexible materials with flat-histogram Monte Carlo methods

Published: November 07, 2016


Nathan Mahynski, Vincent K. Shen


We demonstrate an extensible flat-histogram Monte Carlo simulation methodology for studying the adsorption of multicomponent fluids in flexible porous solids. This methodology allows us to easily obtain the complete free energy landscape for the confined fluid-solid system in equilibrium with a bulk fluid of any arbitrary composition. We use this approach to study the adsorption of a prototypical coarse-grained binary fluid in “Hookean” solids, where the free energy of the solid may be described as a simple spring. However, our approach is fully extensible to solids with arbitrarily complex free energy profiles. We demonstrate that by tuning the fluid-solid interaction ranges, the inhomogeneous fluid structure inside the pore can give rise to enhanced selective capture of a larger species through cooperative adsorption with a smaller one. The maximum enhancement in selectivity is observed at low to intermediate pressures, and is especially pronounced when the larger species is very dilute in the bulk. This suggest a mechanism by which the selective capture of a minor component from a bulk fluid may be enhanced.
Citation: Journal of Chemical Physics
Volume: 145
Issue: 7
Pub Type: Journals


confined fluid, adsorption, selectivity, multicomponent
Created November 07, 2016, Updated November 10, 2018