NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Multi-zone Modeling of Size- Resolved Outdoor Ultrafine Particle Entry into a Test House
Published
Author(s)
Dong H. Rim, Andrew K. Persily, Lance L. Wallace, William S. Dols, Steven J. Emmerich
Abstract
Airborne particle transport into buildings is important for human exposure to particles and associated health effects. The present study investigated the entry of size-resolved outdoor ultrafine particles into a test building under three different ventilation scenarios using a multi-zone airflow and contaminant transport model. Measurement and simulation of the entry of outdoor ultrafine particles into a residential test building were performed and the results compared. These results show that simulations need to consider both particle deposition and penetration losses to predict accurately the time-varying particle concentrations in buildings. Both deposition and penetration have significant effects on the predictions for closed window condition, while deposition loss is much more important than penetration for open window conditions. With windows open, the filtering effect of the building shell decreases and more outdoor particles enter the building. The study results also show how the indooroutdoor (I-O) concentration ratio varies with particle size and building operating conditions. The comparison between measurements and prediction suggests that multi-zone particle transport model can provide insight into the general trend of particle entry into buildings under various building operating scenarios.
Rim, D.
, Persily, A.
, Wallace, L.
, Dols, W.
and Emmerich, S.
(2012),
Multi-zone Modeling of Size- Resolved Outdoor Ultrafine Particle Entry into a Test House, Atmospheric Environment, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912073
(Accessed October 10, 2025)