Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Morphological Estimation of Tip Geometry for Scanned Probe Microscopy

Published

Author(s)

John S. Villarrubia

Abstract

Morphological constraints inherent in the imaging process limit the possible shapes of the tip with which any given tunneling microscope or atomic force microscope image could have been taken. Broad tips do not produce narrow image protrusions. Therefore, feature sizes within the image may be used to place an upper bound on the size of the tip. In this paper, mathematical morphology is used to derive, for each point on an image, a corresponding bounding surface for the tip. The actual tip must be equal to or smaller than the largest tip which satisfies all of the constraints. Example calculations are performed, demonstrating that if the imaged specimen contains sharp features and high relief, the tip shape deduced by this method will be a good estimate of the actual one. Once known, the tip geometry can be deconvoluted from images to recover parts of the actual surface which were accessible to the tip.
Citation
Surface Science
Volume
321

Keywords

AFM, atomic force microscopy, blind reconstruction, dimensional metrology, image simulation, mathematical morphology, scanned probe microscopy, scanning tunneling microscopy, set theory, SPM, STM, stylus profiling, surface reconstruction, tip artifacts, tip estimation

Citation

Villarrubia, J. (1994), Morphological Estimation of Tip Geometry for Scanned Probe Microscopy, Surface Science (Accessed April 16, 2024)
Created January 1, 1994, Updated February 19, 2017