NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Modification of the optical properties of molecular chains upon coupling to adatoms
Published
Author(s)
Garnett W. Bryant, Marvin Muller, Miriam Kosik, Marta Pelc, Karolina Slowik, Andres Ayuela, Carsten Rockstuhl
Abstract
Adsorbed atoms (adatoms) coupled to the matrix of solid state host materials as impurities can signi cantly modify their properties. Especially in low-dimensional materials, such as one-dimensional organic polymer chains or quasi-one-dimensional graphene nanoribbons, intriguing manipulation of the optical properties, such as the absorption cross section, is possible. The most widely used approach to couple quantum emitters to optical antennas is based on the Purcell ffect. This formalism, however, does not comprise charge transfer from the emitter to the antenna, but only spontaneous emission of the quantum emitter into the tailored photonic environment, that is evoked by the antenna. We present a tight-binding formalism to couple an adatom to a finite Su-Schriffer- Heeger chain, where the former is treated as a two-level system and the latter acts as an optical antenna. We systematically analyze how the coupling strength and the position of the adatom in uence the optical properties of the molecular chains in the model. We take into account charge transfer from the adatom to the antenna and vice versa via an inter-system hopping parameter, and also include Coulomb interaction within the antenna as well as between the adatom and the antenna. We show that coupling the adatom to one of the bulk atoms of the linear chain results in a substantial change in optical properties already for comparatively small coupling strengths. We also nd that the position of the adatom crucially determines if and how the optical properties of the chains are altered. Therefore, we identify this adatom-chain hybrid system as a tunable platform for light-matter interaction at the nanoscale.
Bryant, G.
, Muller, M.
, Kosik, M.
, Pelc, M.
, Slowik, K.
, Ayuela, A.
and Rockstuhl, C.
(2021),
Modification of the optical properties of molecular chains upon coupling to adatoms, Physical Review B, [online], https://doi.org/10.1103/PhysRevB.104.235414, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933424
(Accessed October 8, 2025)