Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Mitigation Strategies for Autogenous Shrinkage Cracking

Published

Author(s)

O M. Jensen

Abstract

As the use of high performance concrete has increased, problems with early-age cracking have become prominent. The reduction in w/c ratio, the incorporation of silica fume, and the increase in binder content of high performance concretes all contribute to this problem. In this paper, the fundamental parameters contributing to the autogenous shrinkage and resultant early-age cracking of concrete will be presented. Basic characteristics of the cement paste which contribute to or control the autogenous shrinkage response include the physicochemical properties of the pore solution (mainly its surface tension), the geometrical and topological properties of the pore network, the visco-elastic response of the developing solid framework, and the kinetics of the cementitious reactions. While the complexity of this phenomenon may hinder a quantitative interpretation of a specific cement-based system, it also offers a wide variety of possible solutions to the autogenous shrinkage and early-age cracking problem. Mitigation strategies which will be discussed in this paper include: the addition of shrinkage-reducing admixtures more commonly used to control drying shrinkage, control of the cement particle size distribution, modification of the mineralogical composition of the cement, the addition of saturated lightweight fine aggregates, the use of controlled permeability formwork, and the new concept of water-entrained concrete. As with any remedy, new problems may be created by the application of each of these strategies. But, with careful attention to detail in the field, it should be possible to avoid cracking due to autogenous shrinkage via some combination of the presented approaches.
Citation
Cement and Concrete Composites
Volume
26
Issue
6

Keywords

autogenous shrinkage, building technology, concrete, cracking, mitigation, self-desiccation

Citation

Jensen, O. (2004), Mitigation Strategies for Autogenous Shrinkage Cracking, Cement and Concrete Composites, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860372 (Accessed December 5, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created August 1, 2004, Updated February 19, 2017