NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Y Dabo, H N. Thi, Sam R. Coriell, Geoffrey B. McFadden, Q Li, B Billia
Abstract
Experimental results on solute microsegregation induced by Peltier Interface Demarcation (PID) technique during directional solidification of Bi-1 wt % Sb alloys are presented. These data are compared with the results of numerical simulation and the theory of PID is revisited. It is shown that the Peltier coefficient previously determined using Peltier pulsing has been underestimated. The quantity of interface cooling absorbed by limited Bi-growth kinetics is comparable to that covered by solute depletion, and can even be dominant for very short pulses, so that the commonly made assumption of local equilibrium at the solid-liquid interface (i.e. usual hypothesis of constant interface temperature during pulse marking for pure systems) should be abandoned and the right dependence of interface temperature on solidification velocity be included in the model. Finally, two conditions to select systems capable of efficient marking by PID microsegregation are deduced and the effects of applied current in the first instants of electric pulse clarified.
Dabo, Y.
, Thi, H.
, Coriell, S.
, McFadden, G.
, Li, Q.
and Billia, B.
(2000),
Microsegregation in Peltier Interface Demarcation, Journal of Crystal Growth, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=150779
(Accessed October 10, 2025)