Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Micromechanical Detectors for Local Field Measurements Based on Ferromagnetic Resonance

Published

Author(s)

Albrecht Jander, John M. Moreland, Pavel Kabos

Abstract

Ferromagnetic resonance (FMR) measurements were performed on micron-size thin-film samples integrated onto a micromechanical detector. The FMR response is coupled to cantilever motion in one of three ways. 1) Measure the change in torque on the sample in a uniform field. The FMR precession reduces the static magnetic moment of the sample with a resultant change in torque. 2) Measure the damping torque acting on the FMR precession. 3) Measure the energy absorbed in FMR using a bimaterial cantilever as calorimeter sensor. Our instrument is capable of measuring the FMR response in NiFe samples as small as 2x10-11 cm3 in ambient conditions with a signal-to-noise ratio of 100. In addition we have demonstrated that this system can be used as a quantitative scanning probe magnetic field microscope. Using the magnetic field sensitivity of the FMR response in a small ferromagnetic particle we have achieved 50 A/m field resolution on 20 mm length scales. Both dc fields and microwave fields were imaged.
Citation
Journal of Applied Physics
Volume
89
Issue
11

Keywords

calorimeter, cantilever, ferromagnetic resonance, field sensor, magnetic microscopy, microwave fields, torque

Citation

Jander, A. , Moreland, J. and Kabos, P. (2001), Micromechanical Detectors for Local Field Measurements Based on Ferromagnetic Resonance, Journal of Applied Physics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=4529 (Accessed May 31, 2023)
Created May 31, 2001, Updated October 12, 2021