NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Gary Zabow, John M. Moreland, Stephen Dodd, alan koretsky, erik shapiro
Abstract
While chemically synthesized superparamagnetic microparticles have enabled much new research based on MRI tracking of magnetically labeled cells, signal-to-noise levels still limit the potential range of applications. Here it is shown how, through top-down microfabrication, contrast agent relaxivity can be increased several-fold, which should extend the sensitivity of such cell-tracking studies. Microfabricated agents can benefit from both higher magnetic moments and higher uniformity than their chemically synthesized counterparts, implying increased label visibility and more quantitative image analyses. To assess the performance of microfabricated micrometer-sized contrast agent particles, analytic models and numerical simulations are developed and tested against new microfabricated agents described in this article, as well as against results of previous imaging studies of traditional chemically synthesized microparticle agents. Experimental data showing signal effects of 500-nm thick, 2-υm diameter, gold-coated iron and gold-coated nickel disks verify the silmulations. Additionally, it is suggested that measures of location better than the pixel resolution can be obtained and that these are aided using well-defined contrast agent particles achievable through microfabrication techniques.
Zabow, G.
, Moreland, J.
, Dodd, S.
, koretsky, A.
and shapiro, E.
(2010),
Microfabricated High-Moment Micrometer-Sized MRI Contrast Agents, Magnetic Resonance in Medicine, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=905643
(Accessed October 8, 2025)