Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Measuring Tie Chains and Trapped Entanglements in Semicrystalline Polymers



Amanda G. McDermott, Paul DesLauriers, Jeff Fodor, Ronald L. Jones, Chad R. Snyder


A label-free method for quantifying stress-transmitter (or elastically effective molecule) content (p) in semicrystalline polymers, including both tie molecules and bridging entanglements, is developed and demonstrated based on swelling with deuterated vapor and characterization with small angle neutron scattering. The p results are compared with the predictions of recent semi empirical, statistical values for tie molecule content and structural characterization parameters, including strain hardening modulus and an infrared spectroscopy derived parameter (β) that describes the degree of difficulty for the amorphous content to align and reshape over a distance with applied load. A strong correspondence is observed, suggesting that the initial network of elastically active molecules, dictated by the molecular architecture and crystallization conditions, can be directly correlated to the post yield tensile values irrespective of the subsequent morphological changes that result during the tensile deformation. These comparisons are also consistent with simulations indicating that polyethylene homopolymers have more bridging entanglements than copolymers and that the average tie molecule has a larger impact on mechanical properties than the average bridging entanglement. Contrary to high temperature bulk swelling measurements, it is found that the Michaels-Hausslein vapor-swelling theory cannot fit the experimental data while our modified Flory-Rehner theory can fit the data.


polyolefins, stress transmitters, tie-molecules, strain hardening modulus, vapor swelling


McDermott, A. , DesLauriers, P. , Fodor, J. , Jones, R. and Snyder, C. (2021), Measuring Tie Chains and Trapped Entanglements in Semicrystalline Polymers, Macromolecules, [online],, (Accessed April 12, 2024)
Created September 21, 2021, Updated October 14, 2021