Measuring the dielectric and optical response of millimeter-scale amorphous and hexagonal boron nitride films grown on epitaxial graphene

Published: December 01, 2017


Albert F. Rigosi, Heather M. Hill, Nicholas R. Glavin, Sujitra J. Pookpanratana, Yanfei Yang, Alexander G. Boosalis, Jiuning Hu, Anthony Rice, Andrew A. Allerman, Nhan V. Nguyen, Christina A. Hacker, Randolph E. Elmquist, Angela R. Hight Walker, David B. Newell


Monolayer epitaxial graphene (EG), grown on the Si face of SiC, is an advantageous material for a variety of electronic and optical applications. EG forms as a single crystal over millimeter- scale areas and consequently, the large scale single crystal can be utilized as a template for growth of other materials. In this work, we present the use of EG as a template to form millimeter-scale amorphous and hexagonal boron nitride (a-BN and h-BN) films. The a-BN is formed with pulsed laser deposition and the h-BN is grown with triethylboron (TEB) and NH3 precursors, making it the first metal organic chemical vapor deposition (MOCVD) process of this growth type performed on epitaxial graphene. A variety of optical and non-optical characterization methods are used to determine the optical absorption and dielectric functions of the EG, a-BN, and h-BN within the energy range of 1 eV to 8.5 eV. Furthermore, we report the first ellipsometric observation of high-energy resonant excitons in EG from the 4H polymorph of SiC and an analysis on the interactions within the EG and h-BN heterostructure.
Citation: 2D Materials
Pub Type: Journals

Download Paper


epitaxial graphene, hexagonal boron nitride, amorphous boron nitride, optical dielectric functions
Created December 01, 2017, Updated December 01, 2017