Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Measurement induced dynamics and stabilization of spinor condensate domain walls

Published

Author(s)

Ian B. Spielman

Abstract

Weakly measuring many-body systems and allowing for feedback in real-time can simultaneously create and measure new phenomena in strongly correlated quantum systems. We study the dynamics of a continuously measured two-component Bose-Einstein condensate (BEC) potentially containing a domain wall, and focus on the trade-off between usable information obtained from measurement and quantum backaction. Each weakly measured system yields a measurement record from which we extract real-time dynamics of the domain wall. We show that quantum backaction due to measurement causes two primary effects: domain wall diffusion and overall heating. The system dynamics and signal-to-noise ratio depend on the choice of measurement observable. We describe a feedback protocol to create and stabilize a domain wall in the regime where domain walls are unstable, giving a prototype example of Hamiltonian engineering using measurement and feedback.
Citation
Physical Review Letters

Keywords

Bose-Einstein Condensate, quantum measurement, feedback
Created May 22, 2019, Updated October 2, 2019