Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Maximizing the grafting of zwitterions onto the surface of ultrafiltration membranes to improve antifouling properties



Nima Shahkaramipour, Amin Jafari, Thien Tran, Christopher M. Stafford, Chong Cheng, Haiqing Lin


Superhydrophilic zwitterions have been extensively exploited for surface modification to improve antifouling properties. However, it remains challenging to form layers of < 20 nm with high zwitterion content on the surfaces with different degrees of hydrophilicity. We demonstrate that amine-functionalized sulfobetaine (SBAm) can be co-deposited with dopamine on ultrafiltration (UF) membranes, leading to a thickness of 10 nm to 50 nm and an SBAm content of up to 31 mass% in the coating layers. The covalently grafted SBAm is stable underwater and improves the antifouling properties, as evidenced by the lower trans-membrane pressure required to retain targeted water fluxes than that required for the pristine membranes. The SBAm is also more effective than conventionally used sulfobetaine methacrylate (SBMA) for the zwitterion grafting on the surface to improve antifouling properties.
Journal of Membrane Science


ultrafiltration, membranes, surface modification, fouling, dopamine, zwitterions
Created February 1, 2020, Updated March 13, 2020