Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Magnetic Properties and Electronic Origin of the Interface between Dilute Magnetic Semiconductors with Orthogonal Magnetic Anisotropy

Published

Author(s)

Ryan F. Need, Seul-Ki Bac, Xinyu Liu, Sanghoon Lee, Brian Kirby, Margaret Dobrowolska, Jacek Kossut, Jacek K. Furdyna

Abstract

Controlling changes in magnetic anisotropy across epitaxial film interfaces is an important prerequisite for many spintronic devices. For the canonical dilute magnetic semiconductor GaMnAs, magnetic anisotropy is highly tunable through strain and doping, making it a fascinating model system for exploration of anisotropy control in a carrier-mediated ferromagnet. Here, we have used transmission electron microscopy and polarized neutron reflectometry to characterize the interface between GaMnAs-based layers designed to have anisotropy vectors oriented at right angles from one another. For a bilayer of G1-xMnxAs1-yPy and Ga1-xMnxAs, we find that the entirety of the Ga1-xMnxAs layer exhibits in-plane magnetic anisotropy, and that the majority of the G1-xMnxAs1-yPy exhibits perpendicular anisotropy. However, near the Ga1-xMnxAs interface, we observe a thin Mn-rich region of the nominally perpendicular G1-xMnxAs1-yPy that instead exhibits in-plane anisotropy. Using first-principle energy considerations, we explain this sub-layer as a natural consequence of interfacial carrier migration.
Citation
Physical Review Materials
Volume
4
Issue
5

Keywords

neutron scattering, dilute magnetic semiconductors

Citation

Need, R. , Bac, S. , Liu, X. , Lee, S. , Kirby, B. , Dobrowolska, M. , Kossut, J. and Furdyna, J. (2020), Magnetic Properties and Electronic Origin of the Interface between Dilute Magnetic Semiconductors with Orthogonal Magnetic Anisotropy, Physical Review Materials, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=929865 (Accessed April 25, 2024)
Created May 14, 2020, Updated October 12, 2021