NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Magic wavelengths for the 5s-18s transition in rubidium
Published
Author(s)
Elizabeth A. Goldschmidt, Roger C. Brown, James V. Porto, Robert Wyllie, Silvio B. Koller, M S. Safronova, Ulyana I. Safronova, David Norris
Abstract
Magic wavelengths, for which there is no differential ac Stark shift for the ground and excited state of the atom, allow trapping of excited Rydberg atoms without broadening the optical transition. This is an important tool for implementing quantum gates and other quantum information protocols with Rydberg atoms, and reliable theoretical methods to find such magic wavelengths are thus extremely useful. We use a high-precision all-order method to calculate magic wavelengths for the 5s-18s transition of rubidium, and compare the calculation to experiment by measuring the light shift for atoms held in an optical dipole trap at a range of wavelengths near a calculated magic value.
Goldschmidt, E.
, Brown, R.
, Porto, J.
, Wyllie, R.
, Koller, S.
, Safronova, M.
, Safronova, U.
and Norris, D.
(2015),
Magic wavelengths for the 5s-18s transition in rubidium, Physical Review A
(Accessed October 8, 2025)