NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Machine Learning Analysis for Identification of Cell Shape Metrics Associated with Stem Cell Differentiation in Nanofiber Scaffolds
Published
Author(s)
Desu Chen, Sumona Sarkar, Stephen J. Florczyk, Subhadip Bodhak, Carl G. Simon Jr., Joy P. Dunkers, Julian Candia, Wolfgang Losert
Abstract
Cell shape has been demonstrated to be closely related to cell function and may be an important predictor of cell fate. Many metrics are available to describe cell shape, however the relationship of these metrics to cell fate are not well understood. Specifically, nanofiber scaffold structures have been demonstrated to uniquely induce osteogenic differentiation of human bone marrow stromal cells (hBMSCs) and alter cell shape, similarly to chemically induced differentiation. This phenomenon occurs after only 1 day of culture, and may allow for early prediction of stem cell fate. In this study, we aim to classify cells on nanofiber scaffolds versus flat film substrates based on their shape metrics and correlate these metrics to functional outcomes of the cells. We have developed computational tools based on support vector machine to identify cell morphological features associated with nanofiber induced differentiation of hBMSCs. To accurately classify cells based on shape and to determine the most significant cell shape metrics we have utilized the supercell method to account for cell shape heterogeneity as well as a jackknife method to test the robustness of our classifications.
Proceedings Title
Society for Biomaterials 2014 Annual Meeting & Exposition
Chen, D.
, Sarkar, S.
, Florczyk, S.
, Bodhak, S.
, Simon, C.
, Dunkers, J.
, Candia, J.
and Losert, W.
(2014),
Machine Learning Analysis for Identification of Cell Shape Metrics Associated with Stem Cell Differentiation in Nanofiber Scaffolds, Society for Biomaterials 2014 Annual Meeting & Exposition, Denver, CO
(Accessed October 8, 2025)