Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Low-noise microwave generation with an air-gap optical reference cavity



Yifan Liu, Dahyeon Lee, Takuma Nakamura, Naijun Jin, Haotian Cheng, Megan Kelleher, Charles McLemore, Igor Kudelin, William Groman, Scott Diddams, Peter Rakich, Franklyn Quinlan


We demonstrate a high finesse, microfabricated mirror-based, air-gap cavity with volume less than 1 ml, constructed in an array, that can support low-noise microwave generation through optical frequency division. We use the air-gap cavity in conjunction with a 10 nm bandwidth mode-locked laser to generate low phase noise 10 GHz microwaves, exhibiting a phase noise of −95 and −142 dBc/Hz at 100 Hz and 10 kHz offset frequencies, respectively. This is accomplished using the 2-point lock optical frequency division method, where we exploit 40 dB common-mode rejection of two lasers separated by 1.29 THz and locked to the same air-gap cavity. If used with an octave spanning comb, the air-gap cavity is capable of supporting 10 GHz phase noise below −160 dBc/Hz at 10 kHz offset, a level significantly lower than electronic synthesizers. These results show how extremely small optical reference cavities, operated without the benefit of vacuum enclosures or thermal insulation, can, nonetheless, support state-of-the-art microwave phase noise in compact and portable systems.
APL Photonics


Liu, Y. , Lee, D. , Nakamura, T. , Jin, N. , Cheng, H. , Kelleher, M. , McLemore, C. , Kudelin, I. , Groman, W. , Diddams, S. , Rakich, P. and Quinlan, F. (2024), Low-noise microwave generation with an air-gap optical reference cavity, APL Photonics, [online],, (Accessed June 17, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created January 30, 2024, Updated June 7, 2024