Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Long-Range Electric Field Control of Permalloy Layers in Strain-Coupled Composite Multiferroics

Published

Author(s)

Michelle Elizabeth Jamer, Colin R. Rementer, Anthony Barra, Alexander J Grutter, Kevin Fitzell, Daniel Bernard Gopman, Julie A. Borchers, Gregory P. Carman, Brian J Kirby, Jane P. Chang

Abstract

Artificial composite multiferroic materials can be created by interfacing magnetostrictive and piezoelectric materials, allowing for electric field control of magnetic properties. For multilayer device applications, addition of weakly magnetostrictive layers is a potentially important means of tuning functionality. For such a device, the lengthscale over which weakly magnetostrictive layer(s) can be coupled to an applied electric field is of critical importance. In this work, we use polarized neutron reflectometry to characterize this distance for a model composite multiferroic multilayer system (PMN-PT/galfenol/permalloy). For a superlattice more than 100 nm thick, we observe that the magnetizations of all layers rotate coherently with applied electric field. Further, we observe electric field induced rotation across the entirety of a 46 nm permalloy layer anchored by a single galfenol interface. The confirmation of long-range magnetic coupling in these strain-coupled multiferroic composites opens extensive opportunities for designer technological applications.
Citation
Physical Review Applied
Volume
10
Issue
4

Keywords

magnetism, neutron
Created October 18, 2018, Updated October 10, 2019