An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Linear Temporal Logic (LTL) Based Monitoring of Smart Manufacturing Systems
Published
Author(s)
Gerald Heddy, Umer Huzaifa, Peter A. Beling, Yacov Haimes, Jeremy Marvel, Brian A. Weiss, Amy LaViers
Abstract
The vision of Smart Manufacturing Systems (SMS) includes collaborative robots that can adapt to a range of scenarios. This vision requires a classification of multiple system behaviors, or sequences of movement, that can achieve the same high-level tasks. Likewise, this vision presents unique challenges regarding the management of environmental variables in concert with discrete, logic-based programming. Overcoming these challenges requires targeted performance and health monitoring of both the logical controller and the physical components of the robotic system. Prognostics and health management (PHM) defines a field of techniques and methods that enable condition-monitoring, diagnostics, and prognostics of physical elements, functional processes, overall systems, etc. PHM is warranted in this effort given that the controller is vulnerable to program changes, which propagate in unexpected ways, logical runtime exceptions, sensor failure, and even bit rot. The physical components health is affected by the wear and tear experienced by machines constantly in motion. The controller's source of faults is inherently discrete, while the latter occurs in a manner that builds up over time in a continuous manner. Such a disconnect poses unique challenges for PHM. This paper presents a robotic monitoring system that captures and resolves this disconnect. This effort leverages supervisory robotic control and model checking with linear temporal logic (LTL), presenting them as a novel monitoring system for PHM. This methodology has been demonstrated in a MATLAB-based simulator for an industry inspired use-case in the context of PHM. Future work will use the methodology to develop adaptive, intelligent control strategies to evenly distribute wear on the joints of the robotic arms, maximizing the life of the system.
Heddy, G.
, Huzaifa, U.
, Beling, P.
, Haimes, Y.
, Marvel, J.
, Weiss, B.
and LaViers, A.
(2015),
Linear Temporal Logic (LTL) Based Monitoring of Smart Manufacturing Systems, Proceedings of the PHM Society Conference, San Diego, CA, US, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919129
(Accessed December 7, 2024)