NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Laser frequency stabilization based on steady-state spectral-hole burning in Eu3+:Y2SiO5
Published
Author(s)
Shon M. Cook, Till P. Rosenband, David R. Leibrandt
Abstract
We present and analyze a method of laser frequency stabilization via steady-state patterns of spectral-holes in Eu3+:Y2SiO5. Three regions of holes are created, spaced in frequency by the ground state hyperfine splittings of 151Eu3+ . The absorption pattern of the holes is shown not to degrade after days of probe laser stabilization. An optical frequency comparison between a laser locked to such a steady-state spectral-hole pattern, an independent cavity-stabilized laser, and a Yb optical lattice clock demonstrates a spectral-hole frequency stability of 1x10-15tau-1/2 that averages to 8.5 (+4.8 -1.8) x 10-17 at tau = 73 s. Residual amplitude modulation is reduced by an active servo that feeds back to the DC offset of the RF drive applied to the fiber coupled electro-optic modulator to less than 1x10-6 fractional amplitude modulation at tau > 1 s. The contribution of residual amplitude modulation to the laser frequency instability is further reduced by digital division of the transmission and incident photodetector signals to less than 1x10-6 at tau > 1 s.
Cook, S.
, Rosenband, T.
and Leibrandt, D.
(2015),
Laser frequency stabilization based on steady-state spectral-hole burning in Eu3+:Y2SiO5, Physical Review Letters, [online], https://doi.org/10.1103/PhysRevLett.114.253902
(Accessed October 9, 2025)