Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Laser frequency stabilization based on steady-state spectral-hole burning in Eu3+:Y2SiO5



Shon M. Cook, Till P. Rosenband, David R. Leibrandt


We present and analyze a method of laser frequency stabilization via steady-state patterns of spectral-holes in Eu3+:Y2SiO5. Three regions of holes are created, spaced in frequency by the ground state hyperfine splittings of 151Eu3+ . The absorption pattern of the holes is shown not to degrade after days of probe laser stabilization. An optical frequency comparison between a laser locked to such a steady-state spectral-hole pattern, an independent cavity-stabilized laser, and a Yb optical lattice clock demonstrates a spectral-hole frequency stability of 1x10-15tau-1/2 that averages to 8.5 (+4.8 -1.8) x 10-17 at tau = 73 s. Residual amplitude modulation is reduced by an active servo that feeds back to the DC offset of the RF drive applied to the fiber coupled electro-optic modulator to less than 1x10-6 fractional amplitude modulation at tau > 1 s. The contribution of residual amplitude modulation to the laser frequency instability is further reduced by digital division of the transmission and incident photodetector signals to less than 1x10-6 at tau > 1 s.
Physical Review Letters


laser frequency stabilization, spectral hole burning, spectral diffusion, residual amplitude modulation
Created June 23, 2015, Updated November 10, 2018