Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Knowledge Representation and Decision Making for Mobile Robots



Elena R. Messina, Stephen B. Balakirsky


Knowledge is central to a mobile robot's ability to carry out its missions and adapt to changes in the environment it is traversing. The knowledge subsystem must support acquisition of information from external sources, maintain prior knowledge, infer new knowledge from the knowledge that has been captured and provide appropriate input to the planning subsystem. In order to carry out these responsibilities, there are different categories of knowledge required: task (also known as functional or procedural), and declarative, which includes spatial (or metrical). Representation schemes for the various types of knowledge must be chosen so as to provide the best performance and reliability. Many design decisions must be made, taking into account the real-time requirements of the robot control system, the resolution of the sensors, as well as the onboard processing and memory.Decision-making must be tightly coupled with knowledge representation because the decisions must be based on the knowledge available to the robot. Roboticists have drawn from fields as varied as symbolic AI (e.g., state-space search), Operations Research (e.g., cost-benefit-analysis), Economics (e.g., markets and bidding), and Political Science (e.g., voting methods) for inspiration, as well as creating many ad-hoc methods such as behavior-fusion.
Autonomous Robots


autonomous mobile robots, behavior generation, decision making, intelligent systems, knowledge representation


Messina, E. and Balakirsky, S. (2005), Knowledge Representation and Decision Making for Mobile Robots, Autonomous Robots (Accessed July 15, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created July 13, 2005, Updated February 19, 2017