An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
The 'phase diagram' of a non-Brownian carbon nanotube suspension is measured as a function of concentration, shear stress, and geometrical confinement. We observe a hierarchy of flow-induced structure, including dispersed 'nematics', isolated, periodic and percolated aggregates, and 'jammed' fractal networks. By applying simple scaling arguments to rigid-rod gels, our data suggest that the jamming portion of the network is more diffuse than the full elastic network, akin to 'force chains' in granular media.
Citation
Physical Review Letters
Pub Type
Journals
Keywords
carbon nanotube, jamming, phase diagram, scaling
Citation
Fry, D.
, Wang, H.
and Hobbie, E.
(2021),
Jamming in Carbon Nanotube Suspensions, Physical Review Letters
(Accessed December 13, 2024)