An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Investigating Effect of Wind Speeds on Structural Firebrand Generation in Laboratory Scale Experiments
Published
Author(s)
Samuel L. Manzello, Sayaka Suzuki
Abstract
Firebrands generated from structures are known to be a source of rapid flame spread within communities in large outdoor fires, such as wildland-urban (WUI) fires, and urban fires. It is important to better understand firebrand generation mechanism to prevent structure ignitions by firebrands. Though the wind plays an important role during the large outdoor fires, little known is the influence of wind speeds on firebrand production. To this end, a series of experiments were performed using mock-ups of full-scale wall assemblies exposed to wind. The objective of this study was to examine if experiments with mock-ups of full-scale wall assemblies may provide insight into firebrand generation from structures. Specifically, generated firebrands were collected and compared with those collected from full-scale components and a full-scale structure. The relationship between projected area and mass of firebrands were compared with previous experimental data. It was found that the projected area of firebrands was proportional to the firebrand mass in this study, which is the same as those from experimental studies performed for full-scale components and a full-scale structure. The slope of the relationship of the projected area and the mass of firebrands was the same under the same wind speed and was affected by the applied wind speed within this experimental range.
Manzello, S.
and Suzuki, S.
(2018),
Investigating Effect of Wind Speeds on Structural Firebrand Generation in Laboratory Scale Experiments, International Journal of Heat and Mass Transfer, [online], https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.045
(Accessed December 13, 2024)