Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Interaction Effects in Optically Dense Materials

Published

Author(s)

Steven T. Cundiff, J M. Shacklette, Virginia O. Lorenz

Abstract

The properties of optically dense materials are influenced by interactions between elementary optical excitations. Since such interactions are absent in the dilute limit, the resulting properties are unique to optically dense materials. While linear optical experiments can probe these effects, for example the Lorentz-Lorenz resonance shift, they are often more apparent in nonlinear experiments that are sensitive to coherence. Direct gap semiconductors are typically optically dense close to the fundamental gap and have been extensively studied using ultrafast coherent spectroscopy over the last ten years. However, their coherent optical properties are very complex because of many-body interactions amongthe extended excitations (electron-hole pairs or excitons). Dense atomic vapors have also been studied, but typically using, frequency domain techniques. We present the results of using ultrafast techniques to study both semiconductors and dense atomic vapors. This reveals the similarities and differences of the two systems, yielding insight into the characteristics of each individually.c
Citation
SPIE Meeting

Keywords

four-wave mixing, potassium, semiconductor

Citation

Cundiff, S. , Shacklette, J. and Lorenz, V. (2008), Interaction Effects in Optically Dense Materials, SPIE Meeting (Accessed July 24, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created October 16, 2008