Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Infrared thermography of welding zones produced by polymer extrusion additive manufacturing



Jonathan E. Seppala, Kalman D. Migler


In common thermoplastic additive manufacturing (AM) processes, a solid polymer filament is melted, extruded though a rastering nozzle, welded onto neighboring layers and solidified. The temperature of the polymer at each of these stages is the key parameter governing these non- equilibrium processes, but due to its strong spatial and temporal variations, it is difficult to measure accurately. Here we utilize IR imaging - in conjunction with necessary reflection corrections and calibration procedures - to measure these temperature profiles of a model polymer during 3D printing. From the temperature profiles of the printed layer (road) and sub layers, the temporal profile of the crucially important weld temperatures can be obtained. Under typical printing conditions, the weld temperature decreases at a rate of approximately 100 C and remains above the glass transition temperature for approximately 1 s. These measurement methods are a first step in the development of strategies to control and model the printing processes and in the ability to develop models that correlate critical part strength with material and processing parameters.
Additive Manufacturing


additive manufacturing, 3D printing, IR thermography, material extrusion, fused deposition modeling acrylonitrile butadiene styrene (ABS)
Created July 2, 2016, Updated October 6, 2017