Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Influence of morphology on current-voltage behavior of GaN nanowires

Published

Author(s)

Paul T. Blanchard, Kristine A. Bertness, Matthew D. Brubaker, Todd E. Harvey, Aric W. Sanders, Norman A. Sanford

Abstract

We demonstrate the effect that the different morphologies of MBE-grown GaN nanowires (NWs) can have upon current-voltage (I-V) behavior. Two main aspects of NW morphology were investigated. The first aspect was the NW diameter, dNW. For single-crystal Si-doped GaN NW devices with dNW 120 nm consistently showed ohmic I-V behavior. This discrepancy is likely the result of the comparatively larger surface depletion in thin NWs, which contributes to (i) an increased contact barrier, and (ii) a barrier resulting from an axial band offset between the portion of NW directly beneath the contact and the portion extending from the contact. The second aspect of NW morphology that we investigated was NW coalescence, which occurs when neighboring NWs fuse together during growth. I-V measurements of undoped coalesced NWs showed that these structures can have a free carrier concentration that is significantly higher than the background carrier concentration that is present in single-crystal (non-coalesced), undoped NWs.
Citation
Nanotechnology
Volume
13
Issue
4

Keywords

gallium nitride, nanotechnology, nanowires
Created July 1, 2014, Updated November 10, 2018