Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Inductive detection of fieldlike and dampinglike ac inverse spin-orbit torques in ferromagnet/normal-metal bilayers



Andy Berger, Eric R. Edwards, Hans T. Nembach, Justin M. Shaw, Alexy D. Karenowska, Mathias Weiler, Thomas J. Silva


Phenomena that result from strong spin-orbit coupling (SOC) at ferromagnet/normal metal (FM/NM) interfaces hold great promise for the development of efficient and scalable spintronic devices. SOC drives non-equilibrium spin-charge conversion, manifest as both current-driven spin torque [1,2] and spin precession-driven current [3-6]. SOC also underlies the interfacial Dzyaloshinskii-Moriya interaction (DMI) [7,8]. While efficient spin-charge conversion and large DMI often coincide, e.g. Refs. [9,10], a causal connection between these two phenomena has not yet been experimentally established. It was recently proposed that inter-facial DMI generates a Rashba-Edelstein effect (REE) [11], whereby charge current exerts a field-like torque at the FM/NM interface. The theory predicts a simple quantitative relation between the DMI and the REE. By use of a powerful new microwave spectroscopy method to detect inverse spin-charge conversion processes in FM/NM bi-layers, we demonstrate that the magnitude of the REE is in good agreement with the theoretically predicted value based on the previously measured value of DMI in identical bilayers [12].
Nature Physics
Created March 15, 2018, Updated November 10, 2018