Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Inductive detection of fieldlike and dampinglike ac inverse spin-orbit torques in ferromagnet/normal-metal bilayers

Published

Author(s)

Andy Berger, Eric R. Edwards, Hans T. Nembach, Justin M. Shaw, Alexy D. Karenowska, Mathias Weiler, Thomas J. Silva

Abstract

Phenomena that result from strong spin-orbit coupling (SOC) at ferromagnet/normal metal (FM/NM) interfaces hold great promise for the development of efficient and scalable spintronic devices. SOC drives non-equilibrium spin-charge conversion, manifest as both current-driven spin torque [1,2] and spin precession-driven current [3-6]. SOC also underlies the interfacial Dzyaloshinskii-Moriya interaction (DMI) [7,8]. While efficient spin-charge conversion and large DMI often coincide, e.g. Refs. [9,10], a causal connection between these two phenomena has not yet been experimentally established. It was recently proposed that inter-facial DMI generates a Rashba-Edelstein effect (REE) [11], whereby charge current exerts a field-like torque at the FM/NM interface. The theory predicts a simple quantitative relation between the DMI and the REE. By use of a powerful new microwave spectroscopy method to detect inverse spin-charge conversion processes in FM/NM bi-layers, we demonstrate that the magnitude of the REE is in good agreement with the theoretically predicted value based on the previously measured value of DMI in identical bilayers [12].
Citation
Nature Physics
Volume
97
Issue
11

Citation

Berger, A. , Edwards, E. , Nembach, H. , Shaw, J. , Karenowska, A. , Weiler, M. and Silva, T. (2018), Inductive detection of fieldlike and dampinglike ac inverse spin-orbit torques in ferromagnet/normal-metal bilayers, Nature Physics, [online], https://doi.org/10.1103/PhysRevB.97.094407L (Accessed October 6, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created March 15, 2018, Updated November 10, 2018
Was this page helpful?