An Implementation Proposal for IEEE 802.11ay SU/MU-MIMO Communication in ns-3

Published: June 21, 2019


Hany Assasa, Joerg Widmer, Jian Wang, Tanguy Ropitault, Nada T. Golmie


Wireless communications in the millimeter-wave band bring unprecedented capabilities to achieve wireline performance in wireless networks and alleviate the congestion problem of current wireless technologies. However, efficient wireless networking in this band is extremely challenging compared to wireless technologies operating in the microwave band. IEEE 802.11ay is the next generation multigigabit standard to support wireless networking at 60 GHz. It is envisioned to support extremely high data-rates of up to 300 Gbps, achieved through new complex physical layer techniques including MIMO communication, channel bonding and aggregation, and high order-modulation schemes. Simulating the IEEE 802.11ay standard in a network-level simulator requires accurate abstraction models to incorporate the effects of those techniques. At the time of writing, ns-3, a system-level simulator widely used by the scientific community, still lacks support for MU-MIMO communication. Additionally, it requires generating environment dependent SNR-to-BER look-up tables to accurately simulate SU-MIMO communication. In this paper, we propose a hybrid implementation that includes minimum signal processing blocks to accurately simulate IEEE 802.11ay SU/MU-MIMO communication ins ns-3 with high accuracy and reduced computational complexity.
Conference Dates: June 21, 2019
Conference Location: Florence, -1
Conference Title: Workshop on Next-Generation Wireless with ns-3
Pub Type: Conferences


Millimeter Wave, IEEE 802.11ad, IEEE 802.11ay, 60 GHz, WiGig, MIMO, ns-3, Simulations
Created June 21, 2019, Updated July 02, 2019