NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A Hydrogen-Roaming Pathway for Formation of Methane in the 193 nm Photodissociation of Propene; CH3CH=CH2 and CD3CD=CD2
Published
Author(s)
Yi-Lei Zhao, Allan H. Laufer, Joshua Halpern, Askar Fahr
Abstract
Photodissociation channels and the final product yields from the 193 nm photolysis of propene-h6 (CH2=CHCH3) and propene-d6 (CD2=CDCD3) have been investigated, employing gas chromatography, mass spectroscopy and flame ionization (GC/MS/FID) detection methods. The yields of methane as well as butadiene relative to ethane show considerable variations when propene-h6 or propene-d6 are photolyzed. This suggests significant variances in the relative importance of primary photolytic processes and /or secondary radical reactions, occurring subsequent to the photolysis.Theoretical calculations suggest the potential occurrence of an intra-molecular dissociation through a H-roaming mechanism, involving the ethylenic H- (or D-) atom that likely interacts through the p-orbitals with the methyl group of the precursor to form methane. This process affects the final yields of methane-h4 versus methane-d4 with respect to other products.The product yields from previous studies of the 193 nm photolysis of methyl vinyl ketone-h6 and d6 (CH2=CHCOCH3 , CD2=CDCOCD3), alternate precursors for generating methyl and vinyl radicals are compared with the current results for propene.
Zhao, Y.
, Laufer, A.
, Halpern, J.
and Fahr, A.
(2008),
A Hydrogen-Roaming Pathway for Formation of Methane in the 193 nm Photodissociation of Propene; CH<sub>3</sub>CH=CH<sub>2</sub> and CD<sub>3</sub>CD=CD<sub>2</sub>, Journal of Physical Chemistry A
(Accessed October 12, 2025)