Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

The hunt for refrigerant blends to replace R-134a



Ian H. Bell, Piotr A. Domanski, Gregory T. Linteris, Mark O. McLinden


We investigated refrigerant blends as possible low GWP (global warming potential) alternatives for R-134a in an air-conditioning application. We carried out an extensive screening of the binary, ternary, and four-component blends possible among a list of 13 pure refrigerants comprising four hydrofluoroolefins (HFOs), eight hydrofluorocarbons (HFCs), and carbon dioxide. The screening was based on a simplified cycle model, but with the inclusion of pressure drops in the evaporator and condenser. The metrics for the evaluation were nonflammability, low GWP, high COP (coefficient of performance), and a volumetric capacity similar to the R-134a baseline system. While no mixture was ideal in all regards, we identified 14 binary and ternary blends that were nonflammable (based on a new estimation method by Linteris, et al.) and with COP and capacity similar to the R-134a baseline; the tradeoff, however, was a reduction in GWP of, at most, 51% compared to R-134a. An additional eight blends that were estimated to be "marginally flammable" (ASHRAE Standard 34 classification of A2L) were identified with GWP reductions of as much as 99%. These 22 ``best" blends were then simulated in a more detailed cycle model.
International Journal of Refrigeration
Created August 1, 2019, Updated March 7, 2020