Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

A Human-centered Framework to Update Digital Twins

Published

Author(s)

Peter O. Denno, Deogratias Kibira

Abstract

Developing a digital twin (DT) involves establishing (1) a predictive capability (a model) relevant to the application, (2) means to collect data from the physical counterpart, and (3) means to apply the collected data to the model. Ideally, with these three goals achieved, long periods of steady-state use of the DT might be interrupted only by failure of the sensors used to collect data from the physical counterpart. In reality, however, it can be difficult to confirm that the DT system occupies this comfortable steady-state position. Assessing uncertainty in the predictive model, and the relevance of data collected from the physical counterpart are design-time activities with unclear termination points. Distinguishing sensed change in the physical counterpart from sensor failure is a persistent challenge. In this short paper we describe early work towards a human-centered framework to establish, refine, and update digital twins. Condition-based maintenance and gear backlash in production equipment are used as examples.
Citation
Manufacturing Letters

Keywords

digital twin, condition-based maintenance, joint cognitive work, human-centered, simulation

Citation

Denno, P. and Kibira, D. (2023), A Human-centered Framework to Update Digital Twins, Manufacturing Letters, [online], https://doi.org/10.1016/j.mfglet.2023.06.002, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936651 (Accessed November 8, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created July 13, 2023, Updated October 5, 2023