Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

The hp-Multigrid Method Applied to hp-Adaptive Refinement of Triangular Grids



William F. Mitchell


Recently the hp version of the finite element method has received increasing attention. This is an adaptive finite element approach in which adaptivity occurs in both the size, h, of the elements and in the order, p, of the approximating piecewise polynomials. The objective is to determine a distribution of h and p that minimizes the error using the least amount of work in some measure. It is desirable to combine this optimal order discretization method with an optimal order algebraic solution method, such as multigrid. An intriguing notion is to use the values of p as the levels of a multilevel method. In this paper we present such a method, known as hp-multigrid, for high order finite elements and hp-adaptive grids. Numerical results suggest the method has a convergence rate of 1/2 for Poisson's equation.
Numerical Linear Algebra With Applications


elliptic partial differential equations, finite elements, hp adaptive refinement, multigrid, p-multigrid


Mitchell, W. (2010), The hp-Multigrid Method Applied to hp-Adaptive Refinement of Triangular Grids, Numerical Linear Algebra With Applications, [online], (Accessed June 20, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created March 16, 2010, Updated June 2, 2021