NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Hole spins in an InAs/GaAs quantum dot molecule subject to lateral electric fields
Published
Author(s)
Xiangyu Ma, Garnett W. Bryant, Matthew Doty
Abstract
There has been tremendous progress in manipulating electron and hole spin states in quantum dots or quantum dot molecules (QDMs) with growth-direction (vertical) electric fields and optical excitations. However, the response of carriers in QDMs to an in-plane (lateral) electric field remains largely unexplored. We computationally explore spin-mixing interactions in the molecular states of single holes confined in vertically-stacked InAs/GaAs QDMs using atomistic tight-binding simulations. We systematically investigate QDMs with different geometric structure parameters and local piezoelectric fields. We observe both a relatively large Stark shift and a change in the Zeeman splitting as the magnitude of the lateral electric field increases. Most importantly, we observe that lateral electric fields induce hole spin mixing with a magnitude that increases with increasing lateral electric field over a moderate range. These results suggest that applied lateral electric fields could be used to fine-tune and manipulate, in situ, the energy levels and spin properties of single holes confined in QDMs.
Ma, X.
, Bryant, G.
and Doty, M.
(2016),
Hole spins in an InAs/GaAs quantum dot molecule subject to lateral electric fields, Physical Review B, [online], https://doi.org/10.1103/PhysRevB.93.245402, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=920524
(Accessed October 10, 2025)