An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
High-throughput computational screening of electrical and phonon properties of two-dimensional transition metal dichalcogenides
Published
Author(s)
Winnie K. Wong-Ng, Andres C. Hernandez, Izaak Williamson, Lan Li
Abstract
Two-dimensional transition metal dichalcogenides (2D-TMDs) are of broadening research interest due to their novel physical, electrical, and thermoelectric properties. Having the chemical formula MX2, where M is a transition metal and X is a chalcogen, there are many possible combinations to consider for materials-by-design exploration. By identifying novel compositions and utilizing the lower dimensionality, which allows for improved thermoelectric performance (e.g., increased Seebeck coefficients without sacrificing electron concentration), MX2 materials are promising candidates for thermoelectric applications. However, to develop these materials into wide-scale use, it is crucial to comprehensively understand the compositional effects. This work investigates the structure, electronic, and phonon properties of eighteen different MX2 materials compositions as a benchmark to explore the impact of various elements. Our results identify key factors to optimize MX2 compositions for desired performance.
Citation
JOM Journal of the Minerals Metals and Materials Society
Wong-Ng, W.
, Hernandez, A.
, Williamson, I.
and Li, L.
(2016),
High-throughput computational screening of electrical and phonon properties of two-dimensional transition metal dichalcogenides, JOM Journal of the Minerals Metals and Materials Society, [online], https://doi.org/10.1007/s11837-016-2068-x
(Accessed December 9, 2024)