An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
High temperature constitutive response of a Ti-6Al-4V alloy under rapid heating and dynamic loading
Published
Author(s)
Sindhura Gangireddy, Steven Mates
Abstract
The dynamic compression behavior of a commercial Ti-6Al-4V alloy is measured between room temperature and beyond the β-transus temperature with high thermal resolution using a rapidly-heated Kolsky bar technique. The high thermal resolution allows for a thorough investigation of the dynamic thermal softening behavior of this alloy including effects related to the transformation from the initial hcp α/bcc β dual phase structure to a full β structure, for improved modeling of high temperature dynamic manufacturing processes such as high-speed machining. Data are obtained at an average strain rate of 1800 s-1 from room temperature to 1177 °C, with total heating times limited to 3.5 s for all tests. Short heating times prevent thermal distortion of the Kolsky bar loading waves and can allow an investigation of non-equilibrium mechanical behavior, although no such behavior was identified in this study. Between 800 °C and 1000 °C, a progressive change in the thermal softening rate was observed that corresponded well with the equilibrium phase diagram for this alloy. The dynamic thermal softening behavior in the transformation region is incorporated via a new modification of the Johnson-Cook (J-C) viscoplastic constitutive equation. Rate sensitivity is determined at room temperature by combining Kolsky bar data with quasi-static measurements at strain rates from 0.000075 s-1 to 0.16 s-1 and the data are used to arrive at a full modified J-C model for Ti-6Al-4V to nearly 1200 °C. In its generic form, the modification factor we propose is applicable to any material system undergoing gradual phase transformation over a range of temperatures.
Gangireddy, S.
and Mates, S.
(2017),
High temperature constitutive response of a Ti-6Al-4V alloy under rapid heating and dynamic loading, Journal of the Dynamic Behavior of Materials, [online], https://doi.org/10.1007/s40870-017-0134-2, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=924316
(Accessed December 5, 2024)